\begin{tabbing} when{-}after($e$;${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if first($e$)\+ \\[0ex]then let $s$ = $\lambda$$x$.${\it init}$(loc($e$),$x$)+${\it time}$($e$) in $<$$s$, ${\it Trans}$(loc($e$),kind($e$),${\it val}$($e$),$s$)$>$ \\[0ex]else let $s$ = \=when{-}after(pred($e$);${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$).2\+ \\[0ex]+(${\it time}$($e$)) {-} (${\it time}$(pred($e$))) in $<$$s$, ${\it Trans}$(loc($e$),kind($e$),${\it val}$($e$),$s$)$>$ \-\\[0ex]fi \\[0ex] \-\\[0ex]{\em clarification:} \\[0ex] \\[0ex]when{-}after($e$;${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$\=if first(${\it pred?}$;$e$)\+ \\[0ex]then let $s$\= = $\lambda$$x$.${\it init}$(loc(${\it info}$;$e$),$x$)+${\it time}$($e$) in\+ \\[0ex]$<$$s$, ${\it Trans}$(loc(${\it info}$;$e$),kind(${\it info}$;$e$),${\it val}$($e$),$s$)$>$ \-\\[0ex]else let $s$\= = \=when{-}after(pred(${\it pred?}$;$e$);${\it info}$;${\it pred?}$;${\it init}$;${\it Trans}$;${\it val}$;${\it time}$).2\+\+ \\[0ex]+(${\it time}$($e$)) {-} (${\it time}$(pred(${\it pred?}$;$e$))) in \-\\[0ex]$<$$s$, ${\it Trans}$(loc(${\it info}$;$e$),kind(${\it info}$;$e$),${\it val}$($e$),$s$)$>$ \-\\[0ex]fi \-\\[0ex]\emph{(recursive)} \end{tabbing}